ALGEBRAIC CURVES **EXERCISE SHEET 10**

Unless otherwise specified, k is an algebraically closed field.

Exercise 1.

For $n, d \ge 1$, let V(d, n) the k-vector space of forms of degree d in $k[X_1, \ldots, X_n]$.

(1) Compute $\dim_k(V(d,n))$ for $d \geq 1$ and n = 1,2,3. Can you find a formula for arbitrary n?

Set n=2. Let L_i , $i\geq 1$ and M_j , $j\geq 1$ be two sequences of non-zero linear forms in k[X,Y] such that $L_i \neq \lambda M_j$ for all $i,j \geq 1, \lambda \in k$. Consider $A_{ij} =$ $L_1 \dots L_i M_1 \dots M_j$, $i, j \ge 0$ (if i = 0 or j = 0, the empty product is taken as 1).

(2) Show that A_{ij} , i+j=d, $i,j\geq 0$ form a basis of V(d,2). (Hint: think of dehomogenizing the A_{ij} by setting Y = 1.)

Exercise 2.

Recall properties 1 to 9 of intersection numbers from the course (Thm. 4.5). Prove property 8 using only properties 1 to 7. (Hint: introduce a uniformizer ϖ of $\mathcal{O}_P(F)$ and rewrite the factorization $G = u\varpi^n$, $u \in \mathcal{O}_P(F)^{\times}$ in terms of polynomials in k[X,Y].)

Exercise 3.

Compute the intersection numbers at P = (0,0) of various pairs of the following curves:

- $\bullet \ A = Y X^2$
- $\bullet \ B = Y^2 X^3 + X$
- $C = Y^2 X^3$ $D = Y^2 X^3 X^2$

Exercise 4.

Consider the affine curves $F = Y - X^2$ and L = aY + bX + c, where $a, b, c \in k$ and $(a, b) \neq (0, 0)$.

(1) Compute the intersection points $P \subseteq F \cap L$ and their intersection numbers $I(P, F \cap L)$. Consider $s = \sum_{P} I(P, F \cap L)$. Give a necessary and sufficient condition for s = 1.

Let us identify \mathbb{A}^2_k with the affine open subset $U_1 = \{x_1 \neq 0\} \subseteq \mathbb{P}^2_k$, where we use projective coordinates x_1, x_2, x_3 . Consider \overline{V} (resp. \overline{L}) the closure of $V(F) \subseteq U_1$ (resp. V(L)) in \mathbb{P}^2_k .

- (2) Assume that s = 1. Show that \overline{V} and \overline{L} admit another intersection point outside U_1 and that the intersection number (computed in the affine plane U_2 or U_3) is 1.
- (3) Same questions with F = XY 1.

Exercise 5.

Let F be an affine plane curve. Let L be a line that is not a component of F. Suppose that $L = \{(a+tb,c+td),\ t \in k\}$. Define G(T) = F(a+Tb,c+Td) and consider its factorization $G(T) = \epsilon \prod_i (T-\lambda_i)^{e_i}$ where the λ_i are distinct.

- (1) Show that there is a natural one-to-one correspondence between the λ_i and the points $P_i \in L \cap F$.
- (2) Show that, under this correspondence, $I(P_i, L \cap F) = e_i$. In particular, $\sum_i I(P_i, L \cap F) \leq \deg(F)$ (see for instance exercise 4).